Securing SMTP Message Flow between different Exchange Server 2007 organizations

Written by Marc Grote - mailto:grotem@it-training-grote.de

Abstract

In this article I will show you how how to secure SMTP message flow between Exchange Server 2007 in different Exchange organizations. Securing SMTP traffic between different Exchange 2007 organizations is much simpler as in previous versions of Exchange.

Basics

Is it nessessary to protect SMTP traffic between different Exchange Servers? Let's make a simple test. Start a network trace with your favourite network. In this example I used Microsoft Network Monitor 3.0. After the trace is running start a Telnet session to your Exchange Server with port 25 and send a message over Telnet. Stop the network trace with Netmon and filter the captured traffic by the SMTP protocol. What do you see? Right, the whole authentication process of the SMTP session is cleartext.

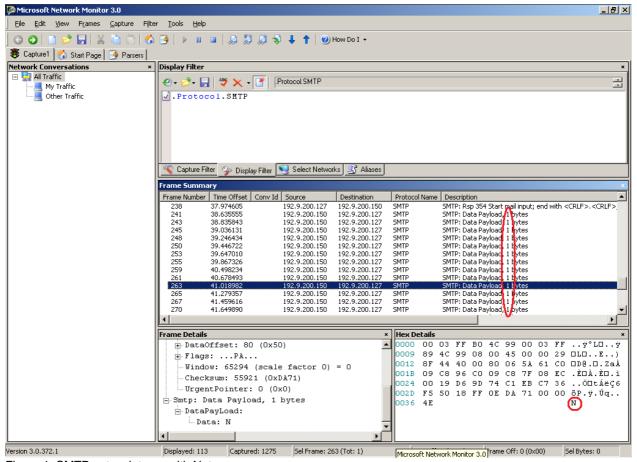


Figure 1: SMTP network trace with Netmon

```
EXECUTE: Telnet localhost

220 EX2007-DC.domaene.tld Microsoft ESMTP MAIL Service ready at Wed, 24 Jan 2007 19:33:51 +0100
helo
250 EX2007-DC.domaene.tld Hello [127.0.0.1]
mail from:administrator@domaene.tld
250 2.1.0 Sender OK
rcpt to:administrator@domaene.tld
250 2.1.5 Recipient OK
data
354 Start mail input; end with <CRLF>.<CRLF>
subject: NO SSL - PLAINTEXT
THIS IS PLAINTEXT
-250 2.6.0 <a3babb10-2efd-4e24-8994-869e50e46560> Queued mail for delivery
```

Figure 2: Sending SMTP message via Telnet

OK, after we know that it is nessessary to implement some kind of more security between these Exchange Servers what is the right solution to do that? It is possible to use IPSEC between these Exchange servers but what does this mean in implementation work? At a minimum you have to use pre shared keys to implement IPSEC between these servers. This could be working well as long as you only have few Exchange Servers. Another solution implementing IPSEC between more than a handful servers are certificates but if you want to implement certificates between Exchange Servers you will need a PKI (Public Key Infrastructure).

Another solution securing SMTP traffic between these servers is new in Exchange Server 2007. You can use a built in function from Exchange Server 2007 to secure the SMTP traffic between Exchange 2007 servers in different Exchange Organizations.

Exchange Server 2007 uses several methods to ensure Message integrity and Message encryption.

- Mutual TLS
- Opportunistic TLS
- Direct Trust
- Domain Security

Mutual TLS

TLS (Transport Layer Security), the successor to Secure Sockets Layer (SSL) is used to encrypt message flow in Exchange Server 2007. The term Mutual means that both Exchange Servers that are envolved in the message Transport process will check the TLS certificate before the connection will be established. Mutual TLS is deloyed in a configuration where both the sender and the receiver authenticate one another before they send the data.

Opportunistic TLS

Opportunistic TLS is new to Exchange Server 2007. Exchange Server 2007 tries to secure the Message flow with other Exchange Servers or foreign messaging systems. Exchange Server 2007 tries to enable a TLS session with the other messaging system in

form of an anonymous TLS request. This is different from Exchange Server 2003 where you must manually enable TLS between different Exchange Servers.

Direct Trust

All message traffic is automatically encrypted between Exchange Servers regardless if a Hub Transport or Edge Transport role will be used. Direct Trust doesn't use the complex X.509 certificate validation mechanism; instead it uses a direct validation in form of the presence of certificate in Active Directory. It doesn't matter if you will use self signed certificates or an internal Certificate Authority.

Domain Security

Domain Security is a combination of different techniques and features such as certificate Management, Exchange Server connector functionality and the behaviour of messaging clients like Microsoft Outlook 2007. The design goal of Domain Security with Exchange Server 2007 is also to establish a secure connection with mutual TLS.

Implementing TLS security

For the purpose of securing mailflow with mutual TLS you can use your Hub Transport servers or if you have implemented it you can use Exchange Servers with the Edge Server role.

As a first step you have to establish a certificate cross Forest trust through the two Exchange organizations in this example. At a minimum you have to add the Root CA certificate from the external Certification authority (CA) to the trusted Root CA certificate store on the Hub Transport or Edge Transport Server. If you have multiple Edge- or Hub Transport Server it could be better implementing cross CA certificate trust or to add the Root CA certificate to the Trusted Root CA store via Group Policies. The following screenshot shows the Root CA certificate of OrganizationB.

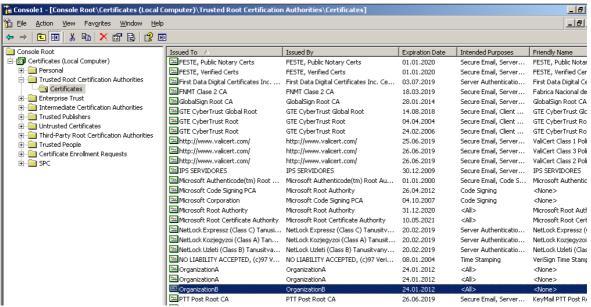


Figure 3: Root CA certificate from the other Exchange Organization

Subject name

Subject Names plays an important part in certificates used by Exchange Server 2007. The subject Name of a TLS certificate is used by DNS aware services. A DNS aware service calls the subject name of a certificate and compares this name with a request. ISA Server is good example when publishing Outlook Web Access or Outlook Anywhere in a HTTPS briding scenario where the common name on the certificate must exactly match the name in the URL that is used to access OWA or Outlook Anywhere. The Subject Name field in a certificate binds a certificate to a single server or a special domain name.

The following table give you an overview about the frequently used relative distinguished names also known as RDN.

Name	Abbreviation	Type	Max Size	Frequency\Max.\Recommended in certificate\request	Order in subject
Country/Region	С	ASCII	2	1\1	1
Domain Component	DC	ASCII	255	Many	1
State or Province	S	Unicode	128	1	2
Locality	L	Unicode	128	1	3
Organization	0	Unicode	64	11	4
Organizational Unit	OU	Unicode	64	Many\Many	5
Common Name	CN	Unicode	64	Many\1	6

Table 1: Commonly used Relative Distinguished Names

Request a certificate

The next step is to request a certificate via the Exchange Management Shell. The Certificate request file can be used to issue a certificate from the internal CA.

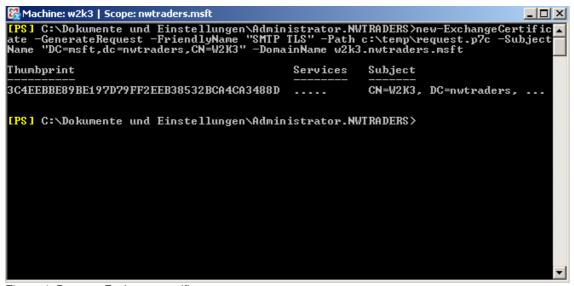


Figure 4: Request Exchange certificates

Open the CA webconsole ans submit a certiciate request by using a base-64 encoded CMC or PKCS#10 file.

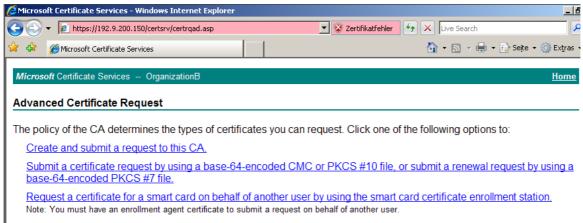


Figure 5: Enable the certificate with the webconsole

The following picture shows an example of the certificate request file. If your browser doesn't allow opening files, you can copy and paste the entire text from the request file into the certificate request section of the webconsole.

Figure 6: The certificate request file

Submit the certificate request

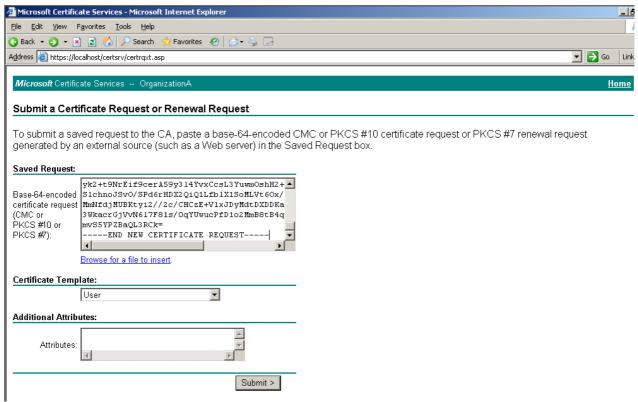


Figure 7: Submit the Certificate request

In the following screenshot you will see the issued certificates from the internal Certificate Authority.

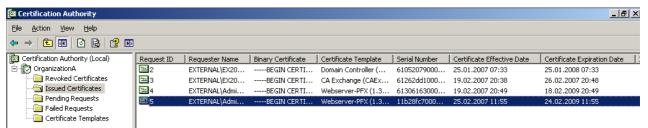


Figure 8: Issued certificates

Import the Certificate

It is important that you use the Exchange Management Shell to import the Certificate.

Import-ExchangeCertificate -Path c:\certificates\import.pfx | Enable-ExchangeCertificate - Services SMTP

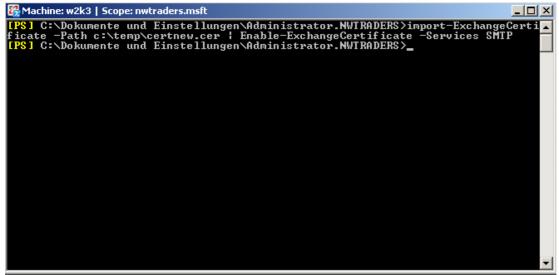


Figure 9: Import the Certiciate into Exchange

Allow the Domain domaene.tld for as a secure Domain list with the Exchange Management Shell

Set-TransportConfig -TLSReceiveDomainSecureList domaene.tld

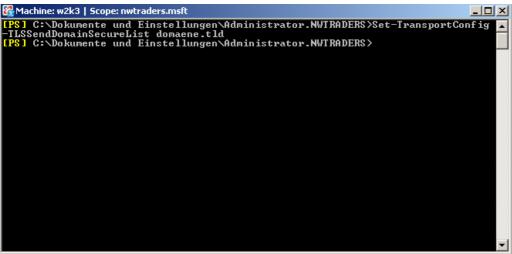


Figure 10: Enable Domain Secure List

Enabling Domain Security on the SMTP Send Connector named "Outbound"

Set-SendConnector Outbound -DomainSecureEnabled:\$True

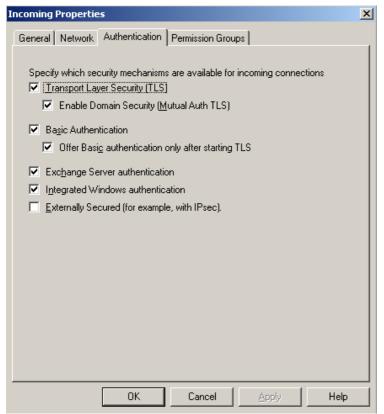


Figure 11: Enable Domain Security with TLS in the Exchange Management Console

Enabling Domain Security on the SMTP Receive Connector named "Inbound"

Set-ReceiveConnector Inbound -DomainSecureEnabled:\$True -AuthMechanism TLS

Please note:

E-Mail messages that have been successful delivered through the domain secured mail flow connection are displayed in Outlook 2007 as "Domain Secure" messages.

Conclusion

As you have seen in this article it isn't complicated implementing secure SMTP messaging between Exchange 2007 servers in different Exchange 2007 organizations and you don't need a complicated solution like implementing IPSEC between these Servers.

Related Links

Implementing Domain Security for Exchange Server 2007 http://technet.microsoft.com/en-us/library/ea756304-4e1a-49b2-95ae-511af8540830.aspx